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A large number of studies have been dedicated to the investigation of the gasdynamic 
flows that develop upon an explosion within the gas. A self-similar solution has been ob- 
tained, and the effects related to the nonideal nature of the gas, finite counterpressure, 
etc., have been studied (see the bibliographies of [I, 2]). 

The gasdynamic description is not applicable to explosions in a rarefied gas. If the 
kinetic effects are relatively weak, they may be considered by introducing viscosity and ther- 
mal conductivity into the system of gasdynamics equations [3, 4]. However, in a number of 
problems that stage of the explosion is of interest in which the dimensions of the region in 
motion is comparableto or not much larger than the free path length of gas particles or ex- 
plosion products. An accurate description of this stage requires a kinetic approach. 

In the present study the dynamics of a strong explosion in a rarefied gas will be stud- 
ied by numerical solution of the system of Boltzmann equations for the distribution functions 
of media particles and explosion products. The applicability of the gasdynamic approxima- 
tion for description of such explosions will be evaluated~ 

i. Formulation of the Problem. The system of Boltzmann equations describing the flow 
which develops in an explosion has the form 

o--7- + v  or =~=1,~ 

F' / 

(1.1) 

where the subscript ~ = i, 2 distinguishes the distribuiton functions and parameters charac- 
terizing the state of the explosion products a = i) and the state of the surrounding medium 
(~ = 2); the primes denote velocity function after collisions; v~8 is the modulus of the rel- 
ative velocity upon collision; do~ is the differential elastic scattering section for type 

particles on type B particles in the solid angle element d~ in the system of the center of 
mass of the colliding particles. In order not to complicate the formulation, it will be as- 
sumed that the scattering sections do not depend on angle and that the total scattering sec- 
tions for the particles of different types are equal, i.e., do~8 = (ao/4~)d~. Moreover, it 
is assumed that the total section Oo does not depend on the value of the relative velocity 
of the colliding particles. In the gasdynamic formulation of the problem of the strong ex- 
plosion the pressure of the medium is neglected in comparison to the pressure in the shock 
front~ This approximation in the kinetic formulation is equivalent to a choice of initial 
conditions for the medium particle distribution function in the form 

(1.2) 

where no is the medium particle concentration; ~(v) is the Dirac delta-function. The ini- 
tial explosion product distribution function, modeling point energy liberation, has the form 

Fl(r, v, t = 0) = N6(r)fo(v), ( 1 . 3 )  

where N is the total number of explosion product particles; Fo(v) is the explosion product 
distribution function normalized to unity. The function Fo(v) corresponds to the density dis- 
tribution up to the moment at which inertial expansion of the explosion products into a void 
begins, the void being formed in the initial gasdynamic stage of the explosion. It is as- 
sumed that Fo(v) has a form corresponding to isothermal expansion [5]: 
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The character vo characterizes the expansion velocity of the explosion products. 

In the problem under consideration, Eqs. (1.1)-(lo4), it is convenient to transform to 
dimensionless variables x, u, T, f~, defined by the relationships 

where 

r ~ ~ 0  X ~ V ~ ~lo U , t .; r ,  = ( 1 . 5 )  

Ro = (3X/4ano)Ut 

In these variables the system of Boltzmann equations has the form of Eq. (i.i) with new di- 
mensionless section 

= noRooo = Kn -~ 

Initial conditions (1.2)-(1.4) are rewritten as: 

/ ~ ( x , u , x = O ) =  4~ 6(x~ - :  .~. ,  e , / ,  (x, u, �9 = O) = ~ (u). 

The problem thus formulated is defined completely by two dimensionless parameters: the Knud- 
sen number Kn = (noRooo) -I and the ratio of the masses of particles of the explosion products 
and medium, ml/m=. 

2. Method of Solution. Numerical solution of Eqo (ioi) is a very complex problem. The 
complexity is related mainly to the high dimensionality and nonlinearity of the Boltzmann 
equations describing the flow of a rarefied gas. Existing difference methods of solution of 
such equations require too large a volume of calculations, beyond the possibilities of pres- 
ent-day computers. Therefore, the problem was solved numerically by the Monte Carlo method. 
For a more accurate consideration of solution peculiarities, and also to increase the effi- 
ciency of the Monte Carlo method, an explicit separation of all unscattered particles, i.e., 
those not experiencing any collisions, was performed~ It is quite simple to perform this sep- 
aration, since the distributions of the unscattered particles over velocity are known-- the 
velocities of unscattered explosion products at the point x at time r is equal to x/r, while 
for the medium, the velocity is equal to zero~ Therefore, unscattered particles can be de- 
scribed by their densities and calculated by difference methods. 

We will write the distribution function in the form 

/~(x, u, ~) = n~(x, ~)p~(x, u, ~) + ~ ( x ,  u, -~ 
p~(x ,  u,  z) = ~(u - -  ua) ,  u 1 = x /% u~ = O, ( 2 . 1 )  

where n a is the unscattered particle density; u~, velocity of the unscattered particle; 
scattered particle distribution function. 

If we introduce the notation 

then system (i.i) with consideration of Eq. (2.1) can be written as 

Ono: 0 

~=a.~ (2.2) 

oz + u ' -YU ---- ~=~.2 

�9 , , f ~  ( 5 ~ , ~ f ~ ) n o : ] .  (2.3) 

The expressions on the right sides of these equations have the following meanings: J~B(pa, 
pB) and JaB(p + , pB ) are the loss of unscattered particles and gain in scattered particles due 
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to collisions of unscattered particles with each other. We note that since the relative ve- 
locities of one type of unscattered particle are equal to zero, then J~(Pa, Pa) = J~+~(Pa, 

I'1 pa) = 0, while J~(Pl, P2) = J~(Pl, P~)---- ~ -~- , where Jg~(P~, f~) is the loss in unscattered par- 

ticles due to collisions with scattered particles; J+~(pm, cp~) is the gain in scattered parti- 
cles due to collisions between unscattered and scattered; J=~(~=, p~) is the collision inte- 
gral describing collision of a scattered particle on an unscattered one; J=~(~=, ~) are the 
Boltzmann collision integrals for scattered particles. 

System (2.2), (2.3) was solved by the splitting method. Each time step of the solution 
was divided into three partial steps. In the first partial step system (2.2), describing 
loss of unscattered particles in collisions with each other and with scattered particles, was 
solved. A second-order accuracy DS N solution method with Wendorff modification [6] was used 
with iterations in the nonlinearity on the right side. The coefficients J~(pa,~) were cal- 
culated in the preceding time step. In the second partial step the Monte Carlo method was 
used to solve the system 

O~z O~r = '~ [n~Jc~ (r PrO q- n~zJ~f~+ (P~z, ~ ) ]  + S~ (2 .4 )  
O~ + u Ox ~=~.~ 

with densities n a and scattered particle sources S= = n= ~ n~I~(p=, calculated in the 

first partial step. Thus, the change in ~= due to transfer and interaction with unscattered 
particles was found. From the probability viewpoint Eq. (2.4) describes a branching process 
of scattered particle wandering over a background of unscattered particles, with which colli- 
sion occur. With each such collision the scattered particle changes its velocity in accord- 
ance with the operator J~(~=,p~)n~ and a new scattered particle is created in accordance 
with the operator J~(p=,~)n= �9 Such a probability interpretation permits use of Standard 
Monte Carlo methods for solution of Eq. (2.4), as developed for solution of linear transfer 
processes [7]. In the process of modeling the wandering, the functionals J~(p=,~) are 
estimated, these characterizing the rate of decrease of unscattered particles in collisions 
with scattered, and required for calculating the first partial step. The estimate chosen was 
one over path length. 

Finally, in the third partial step the system of spatially homogeneous Boltzmann equa- 

tions--~--=~ ~ J=~(~=,~,) was solved. These equations describe the change in ~= due to colli- 
~=~.~ 

sions of scattered particles with each other. A Monte Cario method was used, analogous to 
the method of direct modeling of collisions of a set of particles, first proposed by Bird 
[8, 9]. The initial state of this set is the result of modeling in the previous step. 

The essence of the method consists in picking paired particle collisions located in the 
same spatial cell. The colliding pair is selected with a probability proportional to the 
collision frequency. The co-lision time is chosen by an exponential law with exponent pro- 
portional to the total frequency. 

In the initial stage, with consideration of the spherical symmetry Of the problem, the 
solution of Eq. (2.2) was carried out on a grid formed by the intersection of the character- 
istics x/T = u i of Eq. (2.2) with a = 1 and the straight lines �9 = T n. The same grid was 
used for modeling the wandering of particles in the second partial step. Since at small times 
the density of unscattered particles of the first sort is very high, direct modeling of the 
wandering requires calculation of a large number of collisions. But since the effect of col- 
lisions of scattered particles with unscattered is not great at this stage, this difficulty 
can be avoided, by taking at small T < ~o (To = 10-3-10 -I ) 

]~,  ( ~ ,  r~) = ]~,  (p .  ~ )  ~= 0 

The i n d e p e n d e n c e  o f  the  s o l u t i o n  from To was v e r i f i e d  by c a l c u l a t i o n s .  I n  the  comput ing  p r o -  
c e s s  the  g r i d  was p e r i o d i c a l l y  r e a d j u s t e d  so t h a t  i t s  e x t e r n a l  r a d i u s  would j u s t  encompass  
the  r a n g e  c o n t a i n i n g  s c a t t e r e d  p a r t i c l e s .  I n  the  c a l c u l a t i o n s  5000 p a r t i c l e s  were modeled a t  
each t ime s t e p .  The g r i d  c o n t a i n e d  lO0 c e l l s  a l o n g  the  r a d i u s .  At each s t e p  the  moments o f  
the  d i s t r i b u t i o n  f u n c t i o n s  were  c a l c u l a t e d :  Pa,  d e n s i t y ,  ( 0 u ) a ,  mass f l o w ,  P~fl, P~L , r a d i a l  
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and transverse components of the flow momentum tensor (radial and transverse pressure) of 
each component and their total values, p, pu, P11, P• �9 

The problem was also solved in the gasdynamic approximation, with consideration of vis- 
cosity and thermal conductivity. The coefficients of viscosity n and thermal conductivity 

, corresponding to an isotropic velocity-independent elastic scattering section have the 
form 

~ Kn 16 Kn 6 ~  

in the dimensionless units chosen (Eq. (1.5)). At the initial moment of time the explosion 
products with a density and energy liberation homogeneous over radius are located within a 
sphere of radius ro = 0.i. Computation was performed by an implicit iterationless Lagrangian 
difference method, which is completely conservative [I0]. Mathematical viscosity was not 
used. The calculations employed 50 Lagrangian cells for the explosion products and 200 for 
the surrounding medium. 

3. Results. Calculations were carried out for dimensionless parameter values Kn = 0.i 
and m~/m2 = i. The results are illustrated by Figs. 1-3, where the solid lines denote pro- 
files obtained in the kinetic calculations, while dashes are for the gasdynamic approximation. 
In Figs. 2 and 3 the results of the kinetic calculations are presented as smoothed curves. 
The scale of the fluctuations which appear when the kinetic equations are solved by the meth- 
od described above is illustrated by Fig. i, where the unsmoothed density profile obtained 
at time T = 4.5 is shown. The profiles of Fig. 2 correspond to times T = I in Fig. 2c curve 
I is radial, curve 2, transverse pressure. 

As is evident from Figs. i and 2, the interaction of explosion products with the sur- 
rounding medium leads to the appearance in the medium of shock-wave type perturbations. We 

235 



l 
! 

Fig. 3 

note that the profiles obtained in the kinetic and gasdynamic calculations agree well with 
each other in the main part of the flow. Characteristic features of the kinetic profiles are 
the smoother variation of all quantities in the region of their maxima and somewhat lower 
values of the maxima themselves. The effect Of kinetic processes on the wave front causes 
situations inwhich the maximum density compression (y + l)/(y-- i), equal in the given case 
to 4, is not reached over the course of a lengthy time. This is true because the character- 
istic width of the density profile in the front region is much less than the dimensions of 
the entire region undergoing motion. For example, at timeT = 4.5 the flow region encom- 
passes ~30 path lengths, while the characteristic width of the density profile comprises only 
3-4 path lengths. For the same reason, in the front region at one or two path lengths the 
radial pressure is higher than the transverse, which agrees with conclusions made in a study 
of the structure of planar shock fronts [II]. 

The marked divergence between the density and mass flow profiles obtained in the kinetic 
and gasdynamic calculations near the explosion point is explained by the fact that in this 
region there exist freely expanding explosion products which have not collided with particles 
of the medium. Particles of the medium are "swept" from this region as a result of interac- 
tion with more rapid explosion product particles at earlier times. The density and mass flow 
profiles in this region are determined by the form of Eq. (1.4), the initial explosion prod- 
uct distribution. The dimensions of this region decrease with time at T > i. 

The explosion product distributions differ significantly in the kinetic and gasdynamic 
calculations. In the gasdynamic calculation the explosion products are located within a re- 
gion boundedby a contact discontinuity, the position of which as a function of time is shown 
by the dashed line of Fig. 3. At the same time, the mass of explosion products located with- 
in this region decreases with time in the kinetic calculation. Figure 3 shows the time de- 
pendence of radii encompassing a region in which a definite fraction ~ of the combustion 
product mass is enclosed (v = 0.2; 0.5 and 0.9, curves I-3, respectively). It is evident 
that even at �9 = 3.5, within the region bounded by the contact discontinuity only half the 
explosion products are present. Motion of the explosion prodUcts through the contact dis- 
continuity has the character of diffusion, so that the total mass of the material concen- 
trated in the region limited by the contact discontinuity coincides to an accuracy of 10-20% 
with the mass of the explosion products at all times. 

The calculations performed reveal that at Kn = 0.I the stage of significant interaction 
of explosion products with the medium at distances of ~Ro (~i in dimensionless variables) and 
development of a perturbation in the surrounding medium at larger scales is described to an 
accuracy of 10-20% by the gas dynamics equations with viscosity and thermal conductivity. At 
the same time, such a gasdynamic model does not describe the space--time distribution of com- 
bustion products. 

In conclusion, we note that similar studies of rarefied gas flows were performed in [12- 
14], where in contrast to the present study a simplified kinetic equation with S-model colli- 
sion integral was used. In [4] the problem of a planar strong explosion in a rarefied gas 
was studied. Results were presented for Knudsen numbers Kn = 0.i, 0.5. There was no detailed 
comparison to the gasdynamic solution, although it was shown (Fig. 3 of [14]) that the posi- 
tion of the maximum of medium density agreed well with the position of the shock wave front 
in the gasdynamic problem. 

Detailed comparisons of gasdynamic solutions considering viscosity and thermal conduc- 
tivity with kinetic solutions for reflection of a plane shock wave from a rigid wall [12] and 
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convergence of a spherical wave to the center of symmetry [13] wereperformed in [15]. As in 
the present study, in [15] there was satisfactory qualitative and even quantitative agreement 
between the corresponding kinetic and gasdynamic solutions. 
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